Skip to main content

The USU Bingham Research Center
Research at the Intersection of Energy and the Environment
balloon

Latest News

Dr. Huy Tran, along with Dr. Colleen Jones and Randy Anderson, developed a low-cost particulate matter sensor module using Arduino microcomputers.  At the USU Uintah Basin BaBoom Summer Science Camp on June 14th, Huy helped groups of middle school students build their own sensor modules, and then he built a campfire in a fume hood so they could test how the sensors worked and how different types of fire put out different levels of particulates.  See a couple of photos below.  Good job, team! 

Huy1Huy2

What We Do

Uintah Basin Air Quality

trailerThe Uintah Basin of eastern Utah has good air quality for most of the year, but many winters bring strong thermal inversions to the region that trap pollutants near the ground and encourage the formation of high ozone concentrations. The Basin, as with many high-altitude regions of the West, also experiences the occasional high ozone episode during summer.  We deploy an array of high-precision equipment (from portable solar-powered monitors to fully-instrumented mobile laboratories) to measure ozone, reactive nitrogen compounds, speciated volatile organic compounds, particulate matter, and other air quality and meteorological parameters.  These data have contributed to numerous local, national, and international studies and reports, presentations, and papers, many of which are available on our Papers and Reports page.

Check out our Basin Air Live feed!

Click here to download our fact sheet about Uintah Basin air quality

Click here to download or make a request for data

Air Quality Model Development

model clipartMeteorological and chemical models that researchers and regulators use to simulate air quality were designed for summertime urban conditions and can have difficulty accurately simulating the meteorological and chemical characteristics of winter ozone episodes.  In partnership with federal and state agencies and other academic institutions we are working to develop a modeling framework that is specific to the wintertime inversion episodes in northeastern Utah. This framework utilizes the Weather Research and Forecasting (WRF) model, the Sparse Matrix Operator Kernel Emissions (SMOKE) model, the Comprehensive Air Quality Model with Extensions (CAMx), and the Community Multiscale Air Quality Model (CMAQ).

Energy-related Emissions Characterization

randyWe are engaged in several projects to measure emissions of organic compounds from oil and gas sources, with an eye towards filling gaps in current understanding.  We also work to incorporate existing emissions inventories in air quality models to determine theimpact of changes to emissions on simulated air quality.  You can find out about our extensive work to characterize emissions of organics from produced water ponds here, and publications relating to additional studies are available on our Papers and Reports page.

Atmospheric Mercury Measurements

hgcalibratorMercury in aquatic ecosystems is able to bioaccumulate and biomagnify in the food chain, and is a health risk for those who consume high-trophic level fish.  Most mercury pollution, however, is emitted to the atmosphere.  Unfortunately, shortcomings with current atmospheric mercury instrumentation are limiting our ability to understand how mercury is transported and transformed in the atmosphere. Scientists at the Bingham Research Center are developing improved instrumentation that will allow us to more accurately detect atmospheric mercury compounds.

Uintah Basin Ecology

Our team is expert in the ecology of the Uintah Basin. We perform research on soil reclamation, selenium in the ecosystem, and threatened and endangered species.

Energy Policy Studies Initiative

Energy Policy Studies Initiative

Fossil fuel extraction underpins the economy of the Uintah Basin and the State of Utah, and is an important component of national energy independence. USU has instituted the Energy Policy Studies Initiative to study the impact of policy on the energy industry. Our recent publication, The Regulatory Road Map for Oil and Gas Exploration, Development, and Production in Utah, informs stakeholders who develop the state's vast energy resources.

Who We Are

We are a group of scientists, technical staff. and students who research energy and environmental issues in Utah and around the world.  We are affiliated with USU's Department of Chemistry and Biochemistry and Department of Plants, Soils and Climate.

Learn more about us.

Where We Work

We are located at Utah State University's Bingham building in Vernal, the heart of Utah's oil and gas industry.  Use the map below to find us.